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Preface 

The field of signal and image processing encompasses the theory and practice of 

algorithms and hardware that convert signals produced by artificial or natural means into a 

form useful for a specific purpose. The signals might be speech, audio, images, video, sensor 

data, telemetry, electrocardiograms, or seismic data, among others; possible purposes include 

transmission, display, storage, interpretation, classification, segmentation, or diagnosis.  

Current research in digital signal processing includes robust and low complexity filter 

design, signal reconstruction, filter bank theory, and wavelets. In statistical signal processing, 

the areas of research include adaptive filtering, learning algorithms for neural networks, 

spectrum estimation and modeling, and sensor array processing with applications in sonar and 

radar. Image processing work is in restoration, compression, quality evaluation, computer 

vision, and medical imaging. Speech processing research includes modeling, compression, and 

recognition.  Video compression, analysis, and processing projects include error concealment 

technique for 3D compressed video, automated and distributed crowd analytics, stereo-to-auto 

stereoscopic 3D video conversion, virtual and augmented reality.   
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BILATERAL FILTER 

Kanimozhi.R.K – IV Year 

The bilateral filter is a robust edge-preserving filter introduced by Tomasi and 

Manduchi. It has been used in many image processing and computer vision tasks. A bilateral 

filter has two filter kernels: a spatial filter kernel and a range kernel for measuring the spatial 

and range distance between the center pixel and its neighbors, respectively. The two filter 

kernels are traditionally based on a Gaussian distribution. Being non-linear, the brute force 

implementations of the bilateral filter are slow when the kernel is large. In the literature, 

several techniques have been proposed for fast bilateral filtering. The bilateral filter can be 

implemented as a separable operation. The cost of this approach is still high for large kernels. 

Using local histogram and ignoring the spatial filter kernel, the computational complexity of the 

bilateral filter can be greatly reduced and can be independent of the filter kernel size when 

integral histogram is used. Linearize the bilateral filter by quantizing the range domain to a 

small number of discrete values. The input image in a volumetric data structure can be 

represented as a bilateral grid. The use of bilateral grid increases the accuracy when the spatial 

domain quantization is included. Its parallel implementation demonstrates real-time grayscale 

image filtering performance even for high-resolution images. However, the memory cost maybe 

unacceptable when filter kernel is small. These methods work efficiently only on grayscale 

images.  

Gaussian KD-trees for efficient high-dimensional Gaussian filtering: 

Let N denote the number of image pixels, and D denote the number of channels, its 

computational complexity is O(N log(N)D) and the memory complexity is O(N D). This method 

can be directly integrated for fast bilateral filtering. Permutohedral lattice has a computational 

complexity of O(N D2) and is faster than their Gaussian KD-trees for relatively lower 

dimensionality but has a higher memory cost. However, these methods all rely on quantization 

and may sacrifice accuracy for speed. Inspired by the bilateral filter, a number of edge-

preserving filtering methods that have similar applications, but lower computational complexity 

emerges recently. A recursive approximation of the bilateral filter is that instead of the spatial 

filter kernel, the range filter kernel is constrained. A traditional range kernel measures the 

range distance between the center pixel p and another pixel q based on their color difference. 

However, the proposed method measures the range distance between p and q by accumulating 

the color difference between every two neighboring pixels on the path between p and q. For 

any bilateral filter containing this new range filter kernel and any spatial filter kernel that can be 

recursively implemented, a recursive implementation can be obtained by simply altering the 



coefficients of the recursive system defined by the spatial filter kernel at each pixel location. 

The computational and memory complexity of the proposed recursive approximation are both 

O(ND). It is more efficient than the state-of-the-art bilateral filtering methods that have a 

computational complexity of O(N D2) or O(N log(N)D). Specifically, the implementation takes 

about 35 ms to process a one-megapixel color image (and about 12 ms to process a 1-

megapixel grayscale image). The experiments were conducted on a 3.2 GHz Intel Core i7 CPU. 

The memory complexity of the proposed implementation is also low: as few as the image 

memory will be required (memory for the images before and after filtering is excluded). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



BLIND NOISE ESTIMATION PRINCIPLES 

M.Suriya  – IV year 

SFD (signal and frequency dependent) Noise Model (The Theoretical Assumptions) 

1) A Signal Dependent Model:  

The image formed at the CFA contains noise that depends on the intensity of the 

underlying image. This intensity dependence of the noise model remains until the last step of 

the camera processing chain (JPEG encoding). The value of the tabulated gamma correction 

function is generally unknown. Even when this information is available, the CCD or CMOS 

detectors do not necessarily follow a simple linear relation intensity/variance when acquired at 

the CFA. Therefore, the noise estimation algorithm must estimate intensity-dependent noise. A 

common alternative is to transform the data into homoscedastic noise via an Anscombe 

transform. Yet an Anscombe transform is only possible for raw images. In the general setting of 

a signal dependency that can be different for every frequency, there is Algorithm 1 SFD Noise 

Estimation no other way to estimate the signal dependent noise model than dividing the set of 

blocks into disjoint bins, each for a different intensity and to estimate a separate frequency-

dependent noise model on each intensity bin. 

Assumption 1:  

The noise model is intensity dependent. Therefore, it can only be estimated on groups 

of patches having the same intensity. It is possible to adapt most patch-based homoscedastic 

noise estimation methods to measure intensity-dependent noise, by simply splitting the list of 

input blocks into sets of blocks disjoint in mean intensity (bins) as will be done in lines 4-15 of    

Algorithm 1.  

 

 



 

2) Dealing with Frequency Dependency (The DCT Diagonal Assumption):  

The main assumption underlying the algorithm is that the unknown linear and nonlinear 

transforms that have been applied to the image can be approximated by a diagonal operator on 

the DCT patch coefficients. There are two arguments in favor of an (approximately) diagonal 

operator. The first one is based of the following proposition (its proof is straightforward).  

Proposition 1: Every linear real symmetric filter applied to an image is a diagonal operator on 

the DCT transform. 



Because of boundary effects, this result is only approximately true for the (local) block 

DCT. Second, JPEG 1985 also is a diagonal (nonlinear) operator on the DCT coefficients. The 

demos icing operation itself is an edge adaptive complex operation, but on smooth noisy 

regions it is close to a linear isotropic interpolator, which again is a diagonal operator. This leads 

us to the second assumption.  

Assumption 2:  

A noise patch model is fully described by the variances of its DCT coefficients. These 

variances also depend on the patch (average) intensity (Assumption 1). 3) Definition of the SFD 

Noise Model: The proposed signal and frequency dependent (SFD) noise model follows from 

Assumptions 1 and 2. 

Definition 1: For each patch size w and each color channel we call SFD model a function  

 

where (i, j) is the DCT frequency, w the block size, B the number of intensity level bins, b 

the current bin, and σ (i, j, b) the observed noise standard deviation for this frequency and bin. 

To estimate an SFD model, it is enough to find sufficiently many noise patches in a given 

image, and to apply to them a DCT before measuring the variance of their DCT coefficients. 

B. Finding Patches with Only Noise Blocks  

With minimal variance extracted from the image are likely to contain no signal, and 

therefore only noise. This is the low variance principle. The idea is to associate with each block 

it’s most similar block in a neighborhood. Then, if this similarity is essentially caused by the 

signal, the difference of both blocks becomes a pure noise block, with twice the variance of the 

original noise. In practice, however, most of the selected blocks correspond to flat zones.  



 

This leads us in the next paragraph to refine the selection of noisy patches. 

1) A Sparse Semi-Distance between Patches:  

The patch distance is computed on the patches after applying to them a DCT. Such 

patches DCT patches and denote them by m. The distance of two DCT patches is computed on a 

random subset of half the DCT frequencies when estimating the other half, and conversely. But 

the use of a patch distance will be different. To detect noise patches by comparing them to 

other patches and enhancing any suspicious similarity, interpreted as the presence of signal in 

the patch. To find first for each DCT patch m˜ R a subset of frequencies S (one fourth of the 

frequencies) that are the most likely to represent the patch geometry. To obtain the relevant 

frequencies for a given reference patch m R, all surrounding candidate patches m˜ C at a valid 

(taxi driver) distance r satisfying r1 = 4 < r < r2 = 14 are analyzed in order to find the frequencies 

whose coefficients exhibit the largest variation. The condition r1 < r is to avoid an excessive 

overlapping between the reference and the chosen blocks, to be able to properly estimate 

spatially correlated noise. The condition r < r2 is to reduce the search area, since block 

matching is computationally expensive. 

Definition 2 (Relevant Frequencies): 

 For each reference patch m˜ R and a neighboring patch m˜ C at valid distance, we say 

that (i, j) is a relevant frequency for comparison of m˜ R and m˜ C if | ˜mR[i, j]− ˜mC[i, j]| is 

among the w2 4 first such values in decreasing order. Set H(i, j) as the number of times (i, j) has 

been retained as valid for all neighboring patches m˜ C. We say that (i, j) is a relevant frequency 



for m˜ R if it is associated with one of the w2 4 highest values of H(i, j). The set of relevant 

frequencies of m˜ R will be denoted by S. Definition 3: The sparse distance1 between m˜ C and 

m˜ R is defined by 

 

Given the set of relevant frequencies S for m˜ R, the first factor of the distance,| ˜mR[i, 

j]− ˜mC[i, j]|, penalizes the absolute difference of the DCT coefficients in the blocks (the DCT 

coefficients of similar blocks should be similar). The second factor,   max (| ˜mR[i, j]|,| ˜mC[i, 

j]|) adds more penalty when the absolute value of the coefficient is higher. Indeed, the 

definition of S suggests that the higher the absolute value of the coefficient, the more 

contribution it has to the geometry of the patch. The sparse distance is designed so as to 

enhance any non-casual resemblance with neighboring blocks, being computed on the set of 

relevant frequencies of m˜ C only. Our principle is that the blocks showing the smallest sparse 

distance to their neighbors are more likely than others to be pure noise blocks. Fig. 2 shows the 

blocks selected by Algo. 1 using the sparse distance 

         

 

 

 

 

 

 

 

 

 

 

 



DISTRIBUTED RADAR SENSING 

Akshaya.R – IV Year 

Distributed Radar Sensing is a rapidly growing research area and has recently received 

much attention from the research community. This is mainly because of information limit of 

monostatic radars and their single angle perspective of the target. Distributed radar system 

provides potential advantages such as improving coverage of large areas (e.g., solving blockage 

effects), improving detection performance, and higher 2D (angular) resolution-as distributed 

radar can probe targets from different aspects and can exploit the spatial diversity of radar 

targets for a better detection performance- solving inherent radar problems (such as blind 

speed or Doppler shift problem, aspect angle), possibility of imaging and target feature 

extraction, greater immunity to jamming, as well as the low-power low-complexity radar 

sensors instead of a high power complex radar. Other advantages are resilience to fading, and 

graceful degradation. The disadvantages of distributed radar network are the interference 

among radar emitters, the requirement of precise location information of sensing nodes, the 

synchronization problem of radar sensors and the need for data fusion of many simple types of 

radar. In this paper we concentrate on the interference issue of distributed radar networks. 

Distributed radar sensing network relies on waveforms or signals to unleash its performance 

potential. To this end, the signal design issue is focused in this paper and particularly based on 

wavelet packet modulation technique as wavelets provide flexibility in signal design in 

distributed radar networks. In addition to flexibility, the reconfigurability of wavelet signals is 

also important which paves the way for their successful application in cognitive radar networks. 

Wavelets have been favorably applied in various aspects of radar systems including target 

detection, parameters estimation, feature extraction, classification, Synthetic Aperture Radar 

(SAR) image compression, clutter removal, target extraction from clutter, radar signal de-

noising, data compression, side lobe reduction and interference suppression. The usage of 

wavelet-based waveforms for search and tracking operations of radar is proposed, where the 

waveforms adjust the bandwidth and transmit power adapting to the target and environmental 

conditions. The main property of wavelets in these applications is in their flexibility and ability 

to characterize signals accurately. Wavelet transform, as a possible analysis technique when 

designing radar systems, provides advantages such as flexibility, lower sensitivity to distortion 

and interference, and better utilization of spectrum. In a distributed radar system several 

radars operate in a network and share the spectrum (see Fig. 1). The fundamental geometry of 

the radar network can be bistatic or monostatic. A radar node in the distributed radar network 

can be a transmitter, a receiver, or both a transmitter and a receiver. The idea is the use of 

different waveforms by radars concurrently sharing the spectrum such that a particular receiver 

can separate the resulting received signal and perform target detection. As radars share the 



spectrum in order to avoid interference among radars their signals should be orthogonal. This 

orthogonality is the key characteristic of the distributed radar network. Furthermore, for a high 

resolution in multiple target detection, the transmitted signals should have low correlation side 

lobes levels. The orthogonality can be provided by transmission on orthogonal subcarriers. The 

Pandora signal consists of several linear narrowband \FM (LFM) separated by guard bands. The 

output signal of LFM bands are combined in the radar receiver and providing a high resolution. 

A proper replacement of LFM is the Orthogonal Frequency Division Multiplexing (OFDM) where 

it has been proven that OFDM-coded radar waveforms are comparable with LFM waveforms 

and furthermore, experience no range-Doppler coupling. The main advantages of OFDM are its 

robustness against multipath fading, relatively simple synchronization processing and its 

spectral efficiency. By coding of OFDM radar signal side lobes of the ambiguity function are also 

reduced. A joint radar and wireless communication system for future intelligent transportation 

networks is proposed where an OFDM signal is designed for joint communication and radar 

functionality and the possibility of estimating the relative velocity and efficient implementation 

based on fast Fourier transforms is shown.  

 

An alternative approach to the OFDM scheme is to exploit the orthogonal properties of 

wavelet packet based basis functions. In this technique the Fourier based orthogonal signals of 

OFDM are replaced with wavelet packets. The main advantages of using wavelets are their 

ability and flexibility to characterize radar signals with adaptive time-frequency resolution. In 

fact unlike OFDM modulation which divides the whole bandwidth into orthogonal and 



overlapping sub bands of equal bandwidths, Wavelet packets modulation (WPM) assigns 

wavelet sub bands having different time and frequency resolutions. Furthermore, WPM is more 

robust to interference (an extremely important issue when it comes to distributed radar 

networks where the radar nodes interfere each other) as well as multipath propagation. 

Wavelet packet signals are more spectrally efficient than OFDM and moreover the advantage of 

wavelet transform lies in its flexibility to customize and shape the characteristics of the 

waveforms for joint radar and communication functionalities.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



OPTICAL SIGNAL PROCESSING 

M. Nivetha – III Year 

A. Analog Noise Protected Optical Encryption 

Interference is undesirable when transmitting and receiving data. However, if the 

interference can be controlled, its noise like signature can be used to effectively carry out 

encryption. Interference cancellation techniques are especially important for wireless 

communication. If a wireless router transmits and receives signals at the same time, the 

transmitting antenna generates unwanted interference for the receiving antenna. Because the 

transmitting antenna is much closer than the source of the signal of interest, the amplitude of 

interference is usually much larger than the amplitude of the signal. A technique to cancel the 

interference in which the transmitting antenna is connected internally though a fiber link with 

the receiving antenna. The fiber link includes two channels with two lasers and converts the 

electric signals from both the transmitting antenna and receiving antenna into optical signals by 

intensity modulation. The signal from the receiving antenna contains both the signal of interest 

and the interference, while the signal from the transmitting antenna only contains interference. 

The fiber link can invert the signal from the transmitting antenna using optical devices and sum 

the signals from the two antennas. Since the signal from the transmitting antenna is inverted, it 

can cancel the interference from the receiving antenna. The benefit of using the fiber link for 

interference cancellation is not only that it achieves high speed and real-time processing, but 

also that it reaches a high cancellation ratio of 30 dB. The challenge for this method is that the 

phases and amplitudes of the interference in the two channels must be precisely matched in 

order to be canceled by each other. If either phase or amplitude is not matched, the 

cancellation ratio will decrease significantly with the mismatch. Both the benefit and challenge 

of this cancellation technique are benefits if this technique is applied as an encryption method. 

The interference noise can serve as analog noise accompanying the transmitted signal. The 

precise requirement of amplitude and phase matching can be used as the key for the 

encryption process. The high-speed property of the fiber optic processing method satisfies the 

requirement of large bandwidth and real time processing of the signal encryption. In our 

experiment, we have achieved 10 Gb/s encrypted data transmission with real time encryption 

in a 25 km fiber link  

 



 
Schematic diagram of interference cancellation. 

 

The signal is disguised as natural analog noise, and only by matching both the amplitude 

and phase of the analog noise between transmitter and receiver can the receiver decrypt the 

signal. The analog noise shares the same frequency range with the signal, so that the noise 

cannot be removed by filters. If the eavesdropper cannot find the matching condition, the 

signal cannot be digitized. If the signal cannot be decrypted when being received, the data is 

lost and cannot be recovered by a post-processing technique. The schematic diagram of the 

encryption system reveals that the transmitter is very similar to the interference cancellation 

system (Fig. 2). The only difference is that, in the interference cancellation system, the 

amplitude and phase are designed to be matched, while in the transmitter of the encryption 

system, the amplitude and phase differences are generated deliberately, so both of the 

parameters can be used as keys for encryption. The signals in Channel 1 and Channel 2 can be 

described as: 

 
 



 
 

Fig. 2. Schematic diagram of analog noise encryption system. 

 

where S1 is the transmitted signal and N1 is the interference noise in channel 1. N2 is the 

cancellation noise in channel 2. To decrypt the signal, the amplitude and phase of and have to 

be matched at the receiver. When the interference is cancelled by the receiver, a clear eye 

diagram is received; when the interference is not cancelled, the signal is noisy and cannot be 

digitized. This technique is also suitable for multi-user wavelength division multiplexing (WDM) 

systems. For a single user, the encryption system needs two channels with different 

wavelengths. In the case of a multi-user WDM system, the different users deploying multiple 

WDM channels can share the same channel for carrying the analog noise used for cancellation. 

Different WDM channels can use different keys for the encryption, which means different 

amplitude and phase of the interference noise signal is applied. 

 

 

 

 

 

 

 



STREAM FLOW CHARACTERIZATION AND FEATURE DETECTION USING A DISCRETE WAVELET 

TRANSFORM 

Sarathy Ramadoss – IV Year 

An exploration of the wavelet transforms as applied to daily river discharge records 

demonstrates its strong potential for quantifying stream ¯ow variability. Both periodic and non-

periodic features are detected equally, and their locations in time preserved. Wavelet Scalo 

grams often reveal structures that are obscure in raw discharge data. Integration of transform 

magnitude vectors over time yields wavelet spectra that reject the characteristic time-scales of 

a river's ¯ow, which in turn are controlled by the hydroclimatic regime. For example, snowmelt 

rivers in Colorado possess maximum wavelet spectral energy at time-scales on the order of 4 

months owing to sustained high summer flows; Hawaiian streams display high energies at time-

scales of a few days, reacting the domination of brief rainstorm events. Wavelet spectral 

analyses of daily discharge records for 91 rivers in the US and on tropical islands indicate that 

this is a simple and robust way to characterize stream ¯ow variability. Wavelet spectral shape is 

controlled by the distribution of event time-scales, which in turn reacts the timing, variability 

and often the mechanism of water delivery to the river. Five hydroclimatic regions, listed here 

in order of decreasing seasonality and increasing pulsatory nature, are described from the 

wavelet spectral analysis: (a) western snowmelt, (b) north-eastern snowmelt, (c) mid-central 

humid, (d) southwestern arid and (e) `rainstorm island'. Spectral shape is qualitatively 

diagnostic for three of these regions. While more work is needed to establish the use of 

wavelets for hydrograph analysis, our results suggest that river flows may be effectively 

classified into distinct hydroclimatic categories using this approach. 

Spring snowmelt in a north-eastern US river Rivers in the north-eastern US tend to 

experience a significant increase in ¯ow each spring from the melting of accumulated winter 

snow. However, this structure is commonly obscured by rainstorm events throughout the year, 

as illustrated by a seven-year subset of the daily discharge record for the Ammoniac River, 

Maine (Figure 2c). Transform magnitude vectors for wavelets of scale a (f1; 2; 4; 8; 16; 32; 64; 

128g days, corresponding to feature scales of approximately {2, 4, 8, 16, 32, 64, 128 and 256} 

days are shown in Figure 2a. These vectors are contoured with a single threshold of 5:5 10ÿ6 

m3/s in Figure 2b: intensities above this level appear in black, lower values are not contoured. 

The wavelet Scalo gram of this subset seven-year discharge record reveals seven spring 

snowmelt events (which are of longer duration than rainstorms) as large blobs centered around 

feature scales of 64±128 days (Figure 2b). Note that time is preserved on the x-axis, feature 

scale (event duration) increases along the y-axis and transform intensity rises out of the page. 

Numerous studies have utilized the scale and timing of snowmelt features to identify the 



hydrological regimes of northern watersheds (see Woo, 1990). Wavelet transformation of daily 

discharge time-series permits clear identification of diagnostic structures that may be obscure 

in the raw data, while wavelet spectral analysis (described in the section on analysis of stream 

flow records) provides easy assimilation and comparison of long records for numerous rivers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



WAVELET SPECTRAL ANALYSIS OF DAILY STREAM FLOW RECORDS 

M.Surya – III Year 

Integrating each transform magnitude vector over time to obtain the total energy at 

each wavelet scale a permits construction of spectral curves that react the distribution of event 

time-scales contained in the signal. Wavelet spectra are like Fourier spectra in that the 

temporal location of specific features is lost; the distribution of event scales is instead 

summarized for the entire input signal. Wavelet Scalo grams, which preserve the temporal 

locations of events, should be used to describe ¯ow variability in non-stationary discharge 

hydrographs. For rivers that do not display long-term changes in stream flow structure, wavelet 

spectra are useful for summarizing a river's temporal variability and comparing it with flows in 

other rivers. 

The wavelet transform is a powerful tool for hydrograph analysis, both for identifying 

transient features and quantifying the temporal variability of stream flow. Wavelet Scalo grams 

permit precise location of both stochastic and periodic events in time and may reveal subtle 

structures not easily seen in the raw discharge data. Integration of Scalo grams over time 

permits construction of wavelet spectral curves that react the distribution of event time-scales 

and are diagnostic of hydroclimatic regime. Wavelet spectral curves for 91 rivers from five 

different climatic regions in the US and on tropical islands are strongly similar within the same 

region but differ between regions. More work is needed to establish wavelet transformation as 

a viable and consistent tool for hydrological time-series analysis. Remaining issues include 

determining which wavelet scales are most sensitive to climatic signatures, how to quantify the 

relationship between spectral shape and hydroclimatic regime and how the choice of wavelet 

and sampling rate affects results. However, our first exploration of the topic suggests that river 

flows may be effectively classified by hydroclimatic regime from the shape of their spectra, or 

by combining spectral curves with structural information from wavelet Scalo grams. 

 

 

 

 

 

 



AUTOMATIC DETECTION OF EPILEPTIC SEIZURES IN EEG USING DISCRETE WAVELET 

TRANSFORM AND APPROXIMATE ENTROPY 

D.Kabilan – IV Year 

In this study, a new scheme was presented for detecting epileptic seizures from electro-

encephalogram (EEG) data recorded from normal subjects and epileptic patients. The new 

scheme was based on approximate entropy (ApEn) and discrete wavelet transform (DWT) 

analysis of EEG signals. Seizure detection was accomplished in two stages. In the first stage, EEG 

signals were decomposed into approximation and detail coefficients using DWT. In the second 

stage, ApEn values of the approximation and detail coefficients were computed. Significant 

differences were found between the ApEn values of the epileptic and the normal EEG allowing 

us to detect seizures with over 96% accuracy. Without DWT as preprocessing step, it was shown 

that the detection rate was reduced to 73%. The analysis results depicted that during seizure 

activity EEG had lower ApEn values compared to normal EEG. This suggested that epileptic EEG 

was more predictable or less complex than the normal EEG. The data was further analyzed with 

surrogate data analysis methods to test for evidence of nonlinearities. It was shown that 

epileptic EEG had significant nonlinearity whereas normal EEG behaved like Gaussian linear 

stochastic process. 

Wavelet transforms are widely applied in many engineering fields for solving various 

real-life problems. The Fourier transform of a signal contains the frequency content of the 

signal over the analysis window and, as such, lacks any time domain localization information. To 

achieve time localization information, it is necessary for the time window to be short, therefore 

compromising frequency localization. On the contrary to achieve frequency localization 

requires large time analysis window and time localization is compromised. Therein lies the 

dilemma, sometimes referred to as the ‘‘uncertainty principle”. The short-time Fourier 

transform (STFT) represents a sort of compromise between the time and frequency-based 

views of a signal and contains both time and frequency information. STFT has a limited 

frequency resolution determined by the size of the analysis window. This frequency resolution 

is fixed for the entire frequency band. The EEG data used in this study consists of four different 

sets. The first set includes surface EEG recordings that were collected from five healthy subjects 

using a standardized electrode placement scheme. The subjects were awake and relaxed with 

their eyes open. The data for the last three sets was obtained from five epileptic patients 

undergoing presurgical evaluations. The second and the third data sets consist of intracranial 

EEG recordings during seizure free intervals (interictal periods) from within the epileptogenic 

zone and opposite the epileptogenic zone of the brain, respectively. The data in the last set was 

recorded during seizure activity (ictal periods) using depth electrodes placed within the 

epileptogenic zone. 


